

Abstract—A Web services-based publish/subscribe system

has the potential to create an Internet scale interoperable
event notification system which is important for Grid
computing as it evolves a service-oriented architecture. WS-
Messenger is designed to be a Web services-based message
broker that can decouple event producers and event
consumers and achieve scalable, reliable and efficient message
delivery. In this paper, we discuss some challenges that are
unique to Web services-based publish/subscribe systems and
the key features that distinguish WS-Messenger from other
existing message brokers. We then present the architecture
and the technology used in WS-Messenger. Performance tests
indicate WS-Messenger performs better than the WS-
Notification implementation in Globus Toolkit 4 (GT4) and it
can be used as a complement to GT4 to improve its scalability.
We lastly describe its application to Grid workflow
orchestration in the LEAD project.

I. INTRODUCTION

Grid computing is a promising technology to connect

heterogeneous resources across the world and coordinate
them for scientific computing. Logging what happened to
these resources, auditing the usage of these resources and
monitoring the state changes of these resources are
important tasks for Grid applications. Updates of resources
status need to be disseminated among multiple parties in a
Grid system in the form of “Event messages” or
“Notification messages”. Some sample events in a Grid
application include: a resource starts or finishes a job, a
resource creates an output file, or an error or exception
happens to a resource.

The Publish/Subscribe paradigm is a practical pattern for

disseminating these events to multiple entities in a Grid
system. In this paradigm, an event consumer registers its
interest for some specific kind of event using a “subscribe”
operation and an event source “publishes” events to one or
more event consumers based on their registered interests.

A Web services-based publish/subscribe system is an

important component for service-oriented Grid computing
as Grid computing is converging with Web services
technologies. WS-Eventing specification [1] and WS-
Notification specification [2] are two major specifications
for Web services-based publish/subscribe systems. WS-
Notification is adopted by Globus Toolkit 4 (GT4), which

is the most widely used toolkit for building Grid computing
applications. WS-Eventing is also a promising specification
for building Grid applications because of its simplicity and
the fact it being advocated by many software vendors,
including Microsoft. The University of Virginia [3]
implemented Open Grid Service Architecture (OGSA) [4]
using WS-Transfer [5] and WS-Eventing [1] specifications.
WS-Eventing is also used in the LEAD project [6] to
communicate among different Grid services due to its
simplicity. Since both WS-Eventing [1] and WS-
Notification [2] specifications are used in different Grid
computing systems, it is important to reconcile the
differences between them and make them work together.

WS-Messenger is designed to create a scalable, reliable

and efficient Web services-based message broker that sends
Web services-based event notification messages among
heterogeneous applications, platforms and Grid computing
environments for logging, auditing and monitoring
purposes. Higher level services, such as workflow
orchestration services, grid resource management services,
can use these event notification messages to keep track of
the status of different components in distributed systems.

The key features that distinguish WS-Messenger from

other existing message brokers are:
(1) It is based on Web services specifications and

provides mediation between WS-Notification specification
and WS-Eventing specification.

(2) It provides an extensible framework to leverage
different existing underlying messaging systems so that it
can adapt to different environments. The WS-Messenger
project is concentrated on the Web services interface of a
publish/subscribe system. It can utilize existing messaging
systems to provide scalable subscription management and
message delivery.

(3) It is light-weighted and has simple-to-use APIs to
integrate with existing Java applications. A Java
programmer only needs to add a couple lines of code to an
existing java application to publish and receive Web
services-based notifications. No deployment to any Web
container is needed for a notification publisher or consumer
since WS-Messenger implements the HTTP protocol and
includes a mini HTTP server.

(4) It provides graphic interfaces for subscription
management and debugging Web services-based
publish/subscribe systems.

WS-Messenger: A Web Services-based Messaging
System for Service-Oriented Grid Computing

Yi Huang, Aleksander Slominski, Chathura Herath, and Dennis Gannon
Department of Computer Science, Indiana University,

Bloomington, Indiana, 47405, USA
Email:{yihuan, aslom, cherath, gannon}@cs.indiana.edu

The rest of this paper is as follows. Section II provides an
overview of the functionality of a notification broker in a
traditional publish/subscribe system. Some unique
challenges in Web services-based publish/subscribe
systems are discussed in section III. Section IV contains the
description of the architecture and the technology used in
WS-Messenger. Some user-friendly graphic tools for WS-
Messenger are demonstrated in section V. Interoperability
test and performance test results are presented in section VI
and section VII. We describe our experience in applying
WS-Messenger to the Grid workflow engine in the LEAD
project in Section VIII, and we conclude in Section IX.

II. NOTIFICATION BROKERS IN THE PUBLISH/SUBSCRIBE
SYSTEMS AND RELATED WORKS

A notification broker is a key component for a scalable,

loosely-coupled publish/subscribe system. It provides an
abstraction layer between an event source and an event
consumer so that they can communicate without knowing
the location of each other. The event consumer can be
offline when the event source publishes an event. The event
source is relieved from the burden of handling subscription
registrations and delivering events to all the event
consumers.

There are many notification broker implementations

available. Examples of such systems are Gryphon [7], Siena
[8] , JEDI [9], Hermes [10], ActiveMQ [11], and
NaradaBrokering [12]. They have proposed different ways
of managing subscriptions and delivering notification
messages in a scalable and efficient way. Some of them
have implemented or are working on creating Web services
interfaces based on either WS-Eventing or WS-
Notification.

III. CHALLENGES IN WEB SERVICES-BASED
PUBLISH/SUBSCRIBE SYSTEMS

There are some unique challenges to Web services-based

publish/subscribe systems that have not been addressed in
traditional publish/subscribe systems. One major difference
is that the scope of information disseminating is changed
from closed intranets to the open Internet. Event sources
and event consumers are less likely to be under the control
of the same administrator. Also, notification messages
formats are XML-based SOAP messages. This is
uncommon in traditional Publish/Subscribe systems. In this
Section, we will discuss some of the major challenges to
Web services-based publish/subscribe systems.

A. Interoperability among different implementations of
the same specification

Interoperability in the open Internet environment

depends on service specifications. However, it is still not

easy to achieve truly interoperable Web services even if
they follow the same specification because Web services
technology is still not mature enough and the specifications
are not precise enough for defining the “message on the
wire” that is interoperable. Optional elements defined in the
specifications can also cause incompatibility when
connecting two different implementations.

B. Mediation among different Web services-based
publish/subscribe specifications

WS-Notification and WS-Eventing are two major

specifications for Web services-based publish/subscribe
systems. It is hard to connect an event source and an event
consumer that are implemented either in different
specifications or in different versions of the same
specification. It is quite likely that neither side wants to
change the current specification implementation if they
belong to different organizations. A mediation service is
needed to connect them.

C. Mediation among different transport mechanisms

Web services are transport-agnostic. Services can

communicate using different transport protocols, such as
HTTP 1.0, HTTP 1.1, TCP, SMTP, etc. It is quite likely
that an event source and an event consumer support two
different transport protocols and cannot communicate with
each other, in which case mediation is needed to transform
these transport protocols.

D. Scalable and efficient XML processing

In the traditional Publish/Subscribe messaging systems,

the performance bottlenecks are usually message filtering
and destinations matching. In Web services-based
publish/subscribe systems, the bottleneck is most likely to
be the compute-intensive XML processing. In other words,
the bottleneck is changed from “CPU bound” (internal
processing) to “IO bound” (sending and receiving
messages). More scalable XML processing capability is
needed to improve the performance of Web services-based
publish/subscribe systems.

E. Scalable and efficient XML-based content filtering

Most messages in traditional publish/subscribe

messaging systems are not in XML format. In Web
services-based publish/subscribe systems, however, most
messages delivered are XML-based SOAP messages. There
is increased interest in filtering the XML messages based
on XML structure and content. For example, WS-Eventing
specification uses XPath [13] filtering as the default
messaging filtering. How to create scalable and efficient
XML-based message filters for the Web services-based
publish/subscribe systems is a research challenge. Some
research has been conducted in this field to create an

efficient XPath filtering for XML message stream, such as
Y-Filter [14].

F. Security

The traditional publish/subscribe systems usually operate

in a controlled environment. They can be protected by
firewalls from outside attacks. When the scope of message
delivery is extended to the Internet and among un-trusted
service entities, security is an important concern.
Authentication, authorization, integrity, confidentiality and
non-repudiation all need to be designed at the Internet
scale. Web services-based security also brings tremendous
performance overhead [15] and makes interoperability even
harder.

IV. WS-MESSENGER ARCHITECTURE

WS-Messenger is an open source project developed at

Indiana University. The research efforts for WS-Messenger
focus on addressing the aforementioned unique challenges
in Web services-based publish/subscribe systems. In this
section, we will discuss the architecture of WS-Messenger
and explain the functionality of each layer in the
architecture.

A. Architecture

Figure 1 shows the architecture of WS-Messenger. It has

four layers: a Web service I/O layer, a mediation layer, an
application logic layer and a messaging system adapter
layer.

Figure 1. Architecture of WS-Messenger

The “Web service I/O layer” interacts with both WS-

Eventing clients and WS-Notification clients. Different
types of transport mechanisms can be used in the Web
service I/O layer. Currently, we have implemented support
for HTTP protocol and SOAP.TCP protocol. SOAP.TCP

protocol is used in the Web Service Enhancement (WSE)
package for Microsoft .NET platform. It sends and receives
DIME [16] framed messages using TCP transport.

The “Message Type Detector” inspects each received

message to decide which specification the message follows.
In our implementation, this is decided by checking the
wsa:action element in the SOAP header, which is an
element defined in WS-Addressing [17] specification and it
is required to be specified in the SOAP header in both
specifications.

The mediator in the “mediation layer” is the translator

between the WS-Eventing message format and the WS-
Notification message format based on the message type that
is already determined by the “Message Type Detector”. It
also translates the request messages, such as a subscribe
request, to a java object that is used by the “application
logic layer”. Mediation between WS-Eventing and WS-
Notification is needed when handling the received
notification messages and sending them to different kinds
of event consumers. We will discuss the mediation
approach we used in WS-Messenger in more detail in the
next section.

The “application logic layer” handles the business logic

of subscribing, publishing and subscription management. A
database is currently used in the application logic layer to
save the subscription entries. If the WS-Messenger server
accidentally crashes, previous subscriptions can be
retrieved from the database to restore the WS-Messenger
server to the status before the crash. The database is also
designed to temporarily save undeliverable messages to
support reliable message delivery.

The “messaging system adapter layer” is used to support

various underlying publish/subscribe messaging systems. It
is designed to leverage existing messaging systems. This
layer contains a generic adapter interface to the “application
logic” layer and individual adapters for different messaging
systems. Currently two adapters are implemented: a JMS
adapter and a NaradaBrokering [12] native interface
adapter. The JMS adapter can be used to integrate with
most Java-based Publish/Subscribe messaging systems, e.g.
openJMS [18], activeMQ [11]. Other adapters can be
created to accommodate other non-standard interfaces. For
example, the NaradaBrokering native adapter can take
advantage of the content-based subscription option offered
by NaradaBrokering system.

By wrapping up the underlying messaging systems, WS-

Messenger creates interoperable Web services-based
publish/subscribe systems based on existing messaging
systems. It can take advantage of the features offered by the
existing well-developed messaging system. Different
messaging systems have different features. Some may
emphasize on the scalability and reliability; while others
may emphasize on fine-grained message filtering. By
choosing different messaging systems, WS-Messenger can
be applied to different environments to meet various

requirements.

The limitation of this “wrapping-up” approach is that the

available subscription options (dialects) of WS-Messenger
depend on underlying messaging systems. If the underlying
messaging system does not have the desired subscription
option, WS-Messenger cannot offer it. For example, few
messaging systems have XML-based filtering capability
while it is important for Web services-based
publish/subscribe systems.

This problem can be solved by extending the generic

adapter interface and providing a native matching algorithm
in WS-Messenger. To use other message filtering packages
that do not come with a publish/subscribe system, such as
the XPath-based Y-Filter [14], one must create an adapter.

B. Mediation Technique in WS-Messenger

WS-Eventing and WS-Notification specifications are two

competing specifications defining the interfaces for Web
services-based publish/subscribe systems. The Web
services interfaces and the notification message formats
defined in these two specifications are different. Both
specifications have been used in different Grid projects.
The fact that both specifications are being used in different
Grid projects creates obstacles in integrating and reusing
their Web services. For example, the Web services in one
project may generate WS-Eventing formatted notification
messages. These messages cannot be consumed by a Web
service developed using GT4 toolkit since that service
expects WS-Notification formatted notification messages.

WS-Messenger helps to solve this problem through a

mediation approach. As a notification broker, WS-
Messenger implements both specifications and can accept
SOAP messages following either specification. Two kinds
of messages are expected by WS-Messenger: Operation
messages, such as subscription requests, and notification
messages. If an operation message is received, WS-
Messenger will process it and send response messages
using the same specification of the request message. When
a subscription request is received from a client, the
specification used in the request is stored together with the
subscription information.

If a notification message is received, WS-Messenger

needs to forward it to the interested event consumers.
Depending on the event consumer type, either WS-Eventing
or WS-Notification, WS-Messenger can automatically
convert the notification message formats to makes sure that
the message “on the wire” can be understood by the event
consumers. For example, a WS-Notification consumer can
receive notification messages published by a WS-Eventing
publisher as long as it subscribes to that kind of messages,
and vice versa. The event consumer type is determined by
the subscription request message type. Here we assume that
the subscribers and the event consumers use the same
specification. This is a valid assumption for most cases

since the subscribers needs to know the location of the
event consumers. They are tightly coupled. A publisher can
publish messages in any format to the WS-Messenger
server. It makes no difference to the event consumers.

The mediation for notification messages is achieved

through extracting the content of the notification messages
received from the publisher and performing transformation
according to the predefined mediation rules.
Transformations performed include namespace mediation,
WS-Addressing mediation, message format mediation and
adding default values. Unlike many systems, WS-
Messenger does not use a WSDL to java object tool to
generate a SOAP skeleton and stub. Instead it manipulates
SOAP messages directly as XML documents and performs
message transformations efficiently.

1) Namespace Mediation

The namespaces used in the two specifications are

different. Wrapped WS-Notification messages require the
WS-BaseNotification namespace for the “notify” element,
while WS-Eventing does not need to use the WS-Eventing
namespace in the notification messages.

2) WS-Addressing Mediation

The WS-Addressing versions used in these two

specifications are also different. WS-Notification uses the
2003/03 version, while WS-Eventing uses the 2004/08
version. Our own implementation of the WS-addressing
specification is used in WS-Messenger.

3) Message format Mediation

There are three kinds of notification message formats:

wrapped WS-Notification format, raw WS-Notification
format and WS-Eventing format. The wrapped WS-
Notification format wraps a notification message into a
“Notify” element and add additional WS-Notification
defined information (such as Topic) in it. The raw WS-
Notification message format is similar to the WS-Eventing
format except the WS-Addressing versions used in them are
different. The internal message format in WS-Messenger is
the wrapped WS-Notification format since that contains
more information than the other two formats and can be
transformed to the other format if needed. Transformation
is needed when receiving notification messages in the WS-
Eventing format or the raw WS-Notification format and
when delivering notifications to the consumers requiring
those two formats.

4) Using default values in the mediations

WS-Eventing specification does not require specifying a

topic in a notification message, while a wrapped WS-
Notification formatted message requires a topic. How to
mediate the “topic” element is a challenge. WS-Messenger
uses the following strategy to deal with this problem.

First, WS-Messenger tries to find the topic in the SOAP
header of a WS-Eventing message. Although WS-Eventing
specification does not require specifying a topic in a
notification message, it is possible to specify a topic using
SOAP header if needed. One scenario of specifying a topic
in the WS-Eventing message is to use the
referenceProperties or referenceParameters of the event
consumer’s EndPointReference in the subscription
message. According to the WS-Addressing specification,
when sending messages to the event consumer, each
reference property and reference parameter element
becomes a header block in the SOAP message. WS-
Messenger can examine the SOAP header and see if it can
find a topic element. If so, it will map that to the topic
element in the WS-Notification message.

Second, if WS-Messenger cannot find a topic in the WS-

Eventing message, a reserved default topic, wseTopic, is
used in the transformation to a wrapped WS-Notification
message for its internal processing. In this way, a WS-
Notification subscriber for a specific topic will not get this
message since it does not match the subscribed topic.
However, a WS-Notification subscriber can get the message
in the correct WS-Notification format if it subscribes to all
the topics using a wildcard subscription. Similar case
applies to a WS-Eventing subscriber that uses topic-based
subscription. If a WS-Eventing subscriber subscribes using
other kind of filtering criteria, like content-based filtering,
WS-Messenger can detect that no topic is specified in the
subscription and subscribe automatically to this special
topic. In this way, it can still receive the message that
contains no topic if it matches the filtering criteria.

C. API to Integrate WS-Messenger in Java Applications

The WS-Messenger package provides an easy-to-use

java API for users to integrate the messaging system with
their applications so that any java application can publish
and receive Web services-based event notification
messages. The java applications do not need to be deployed
to a Web container for creating a web service or an event
consumer since WS-Messenger has a light-weighted http
server.

Switching the specification used in the java application is

very easy. Depending on whether the user wants to use
WS-Eventing or WS-Notification, she can create either a
WseClientAPI object or a WsntClientAPI object in the
application code. For example,
WseClient publisher=new WseClientAPI() creates a
publisher following the WS-Eventing specification. Calling
publisher.publish(consumer, producer, topic, message) can
publish the message to a consumer or a notification broker.

D. Delivering Messages to Event Consumers behind the
Firewalls

Firewalls can block the communications between event

sources and event consumers in the Internet scale
messaging systems. It is hard to send event notifications to
an event consumer behind a firewall. Opening firewalls to
allow communications for some applications is not practical
in many cases. To solve this problem, we created a
MessageBox web service [19] that runs outside of the
firewall and can store notification messages for the event
consumers behind the firewalls.

Figure 2. Using MessageBox service to deliver notification messages to
event consumers behind firewalls

Figure 2 illustrates the steps to use the message box

service. First, an event consumer requests a MessageBox
web service to create a message box for it and receives a
reply containing the reference to the created message box.
The reference of the message box created is expressed
using EndpointReferenceProperties in the WS-Addressing
specification. Then it sends a subscription request to the
WS-Messenger service using the message box reference as
the event consumer location. WS-Messenger will then
deliver notification messages to the specified message box.
The event consumer can then periodically pull notification
messages from the specified message box in the
MessageBox service. When the message box is no longer
needed, the subscriber can send another web service request
to destroy the message box.

V. TOOLS FOR MANAGING AND DEBUGGING
WEB SERVICES-BASED PUBLISH/SUBSCRIBE SYSTEMS

Monitoring and debugging in asynchronous Web

services-based publish/subscribe systems can be
challenging without appropriate tools. We created some
tools to simplify the management of notification brokers
and debugging processes in Web services-based
publish/subscribe systems.

A. Subscription Manager Web Interface

The Subscription Manager Web Interface is a servlet that

can access any WS-Messenger broker using standard Web
service invocations. It can display all the subscriptions on
that broker and can delete unnecessary subscriptions. The
administrator does not need to enter the subscriptionId to
delete a subscription. She only needs to check the checkbox
of the subscriptions to be deleted and click the “delete”
button. Multiple brokers can be managed through this
simple Web interface by switching between different broker

URLs. This interface can be embedded in an administration
portal as shown in Fig.3 below.

Figure 3. Subscription Manager Interface

B. Event Notification Message Viewer

The “Event Notification Message Viewer” (Fig. 4) can

act as either a WS-Notification client or a WS-Eventing
client that subscribes to a topic and it starts listening to that
topic when the user clicks the “start” button. It can be used
to check the message flow on an event channel, check the
availability of the notification broker, check messages on
the wire in the publish/subscribe system and check firewall
problems that may block the delivery of the notification
messages. The received notification can be displayed in
“brief message” form or “whole message” form. The “brief
message” form displays the message content only. The
“whole message” form displays whole SOAP messages,
including SOAP headers. To help checking the firewall
problem that may block the delivery of messages, the
“Notification Message Viewer” can switch to “Pull” mode
and periodically pull messages from a message box service
outside of the firewall.

Figure 4. Event Notification Message Viewer

VI. INTEROPERABILITY WITH GT4

Currently the Globus Toolkit 4 (GT4) implementation

only supports the WS-BaseNotification specification
(version 1.2) [20]. It does not have a notification broker
implementation and uses the “tightly coupled”
publish/subscribe model. WS-Messenger can be used as a

notification broker for GT4 to alleviate the burden on an
event source and to decouple the event source and event
consumers.

We have confirmed interoperability with GT4 for

creating subscriptions and delivering notification messages.
The interoperability test is based on the auction sample
program discussed in [21]. The tests we conducted include
(1) using a WS-Messenger client to subscribe to the GT4’s
notification service and receive the notifications triggered
by the ResourcePropertyValueChangeNotification in GT4
and (2) using a GT4 client to subscribe to the WS-
Messenger broker and receive notifications created by a
WS-Messenger publisher. Our results show that GT4 and
WS-Messenger can successfully interoperate with each
other in creating subscriptions and delivering event
notifications subject to one small problem.

An issue we encountered in our interoperation test is a

transport layer problem. The default transport protocol used
by GT4 is HTTP 1.1. Our implementation uses HTTP 1.0
protocol which does not understand the “chunked
encoding” in HTTP 1.1. To get around with this problem,
we need to configure GT4 to use HTTP 1.0 protocol by
modifying a line in the client-config.wsdd configuration file
in GT4. In the future version of WS-Messenger, we will
add HTTP 1.1 support to our Web server so that we do not
need to change the default transport protocol in GT4 to
interoperate with it. We will also carry out more
interoperability tests on other operations defined in the WS-
Notification specification.

VII. PERFORMANCE EVALUATION

We conducted performance tests on WS-Messenger

(version 1.43.0) and compared its performance with the
WS-Notification implementation in GT4 (version 4.0.1).
The performance tests were performed using a computer
with dual Intel Pentium 4 2.80GHz CPU and 1GB of RAM,
running Linux gentoo. Performance data were taken after
each event consumer had received 10 messages to ensure
all the components had adequate starting times. Publishing
rate was kept sufficiently low to make sure that one
notification message was delivered to all the event
consumer(s) before publishing the next message to the
notification broker/GT4 Server. A timestamp (t0) was taken
and embedded in each published notification message.
Another timestamp (t1) was taken when an event consumer
received the notification messages. The processing time t
by WS-Messenger or GT4 service was measured as t=t1-t0.
The average processing time was the average of all t values
reported by each consumer and in each test round. To
eliminate time synchronization problem and minimize the
network delay, all entities were running in the same
machine.

Fig.5 shows the average processing time to send a

notification message (587 Bytes in size) to varying number

of event consumers. The average processing time for
sending the message in both WS-Messenger and the GT4
increases linearly as the number of event consumers
increases. However, there is noticeable performance
difference. WS-Messenger performs much better than GT4.

Performance Comparison between
WS-Messenger and GT4

0

100

200

300

400

0 20 40 60

Number of Event Consumers

A
ve

ra
ge

 P
ro

ce
ss

in
g

Ti
m

e
(m

s)

GT4
WS-Messenger

Figure 5. Performance Evaluation

We think the performance advantage of WS-Messenger
is mainly attributed to two factors:

(1) The underlying SOAP toolkits have performance
difference. WS-Messenger uses XSUL [22] to process the
received SOAP messages, which performs better than the
Apache Axis used by GT4 as described in the performance
comparison in [23].

(2) WS-Messenger eliminates databinding overhead.

WS-Messenger processes SOAP messages directly at the
XML message level without creating databinding between
XML elements and java objects. This can reduce some
overhead in SOAP message processing.

VIII. APPLICATION IN GRID SYSTEMS

The LEAD (Linked Environments for Atmospheric

Discovery) project [24] is a Grid project that “addresses the
limitations of current weather forecast frameworks through
a new, service-oriented architecture capable of responding
to unpredicted weather events and response patterns in real
time” [6].

Notification system plays an important role in the

communications between various Web services involved in
the LEAD project. A Grid workflow engine orchestrates
these services. The workflow engine sequences the
workflow tasks based on the notification messages. WS-
Messenger is applied in the LEAD project to create all the
entities in the notification system, including the event
consumers, the event sources and the notification broker.
Figure 6 shows the architecture of the notification system in
the LEAD project.

Some services are event consumers. They need

information about workflow execution status, output data
location, etc. Specifically, the services include:

Metadata catalog services that manage personal
metadata on previous and current experiments, including
data files, workflow configurations and execution logs and
so on,

Data provenance services that keep track of the
derivation history of scientific data,

A Workflow engine that orchestrates the execution of
workflow,

Real-time workflow monitors that display the status of a
running workflow in a graphic interface [25].

Some services are event sources. They publish

notification messages on status updates, e.g. workflow
execution status, output data location. We developed a
generic web services factory to covert executable
application programs to web services and generate
notification messages about the execution status [25]. Many
services in the LEAD project are long running processes
that may take hours or even days to finish. Notification
services, working together with the workflow engine, can
monitor the status of long-running processes and automate
the process of workflow execution. Some sample services
that are event sources include:

Decoder services that decode raw data from instrument

to well-formatted data for further software processing,
Visualization services that convert the simulation output

to a movie or images.

Figure 6. Notification system architecture in the LEAD project

Subscription creation and destruction are controlled by

the workflow engine. Topic-based subscription is currently
used in our model because of its simplicity and scalability.
Before invoking any services, the workflow engine creates
an event consumer and sends subscription requests to the
notification broker. It also subscribes itself to the broker to
receive state-change notifications about a workflow. It may
also send other subscription requests for other services,
such as the monitoring services, logging services, etc.
When the workflow engine invokes a service, in addition to
passing the application parameters, it also passes the
location of the notification broker and specifies the topic for
the notification service. The invoked services publish event
notifications to the notification broker, which then sends the
messages to the subscribed parties. The workflow engine
orchestrates different services based on the status
notifications of each service. When a workflow finishes, the
workflow engine shuts down the event consumers and
sends "unsubscribe" requests to the notification broker to

cancel the subscriptions for itself and other service
components.

The users access the Grid workflow from a web portal

interface. They can compose workflows using a graphic
interface, select the data for the workflows, execute the
workflows and monitor the workflows [25]. The
publish/subscribe notification mechanism and topic creation
are transparent to the end users. They only need to care
about the simulation workflow and selecting the
appropriated data for the workflow. The topics are
generated automatically and uniquely by the portal server
based on a user's information, such as userID, workflow
name, etc. The portal server passes the topic to the
workflow engine when an end user invokes the workflow
through the Web portal.

IX. CONCLUSIONS AND FUTURE WORKS

In this article, we identified several challenges in

exploring the full potential of Web services technology to
create a global interoperable message delivery network.
WS-Messenger addresses some of these challenges by
leveraging existing notification messaging systems to
provide the interoperability of Web services-based
publish/subscribe systems. It supports both WS-Eventing
and WS-Notification at the same time through a mediation
approach.

WS-Messenger can be complementary to GT4 to

decouple event producers and event consumers.
Interoperability test and performance comparison test have
been conducted between WS-Messenger and GT4, and the
results show that they can interoperate with each other
successfully and there is significant performance lead of
WS-Messenger over GT4.

We have applied WS-Messenger to the Grid workflow

engine in the LEAD project and found that it is a practical
approach to decouple the service components in the
service-oriented Grid computing systems and to orchestrate
Grid workflows. We also developed GUI tools that can be
used for debugging and monitoring Web services-based
publish/subscribe systems.

The work of WS-Messenger is ongoing. We are applying

it to real world service-oriented Grid projects and
continuously improving it and adding new functionalities.
As part of the future works, we would like to add XPath-
based filter support, integrate with WS-ReliableMessage,
add security support, and improve service reliability and
scalability, etc.

ACKNOWLEDGEMENTS
The authors are grateful for Yong Zhao of the University

of Chicago for his valuable comments to improve this
paper. We would also like to thank the anonymous referees
for helpful comments.

REFERENCES:

[1] D. Box and et.al, Web Services Eventing, Available:
http://ftpna2.bea.com/pub/downloads/WS-Eventing.pdf

[2] OASIS, WS-Notification (v1.2), Available: http://docs.oasis-
open.org/wsn/2004/06/

[3] M. Humphrey, G. Wasson, et al., "Alternative Software Stacks
for OGSA-based Grids," Proceedings of Supercomputing 2005,
2005.

[4] I. Foster, C. Kesselman, et al., "Grid Services for Distributed
System Integration," Computer, vol. 35, 2002.

[5] J. Alexander and et.al., Web Service Transfer, Available:
http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-
transfer.pdf

[6] B. Plale, D. Gannon, et al., "Cooperating Services for Data-
Driven Computational Experimentation," Computing in
Science & Engineering, vol. 7, 2005.

[7] G. Banavar, T. Chandra, et al., "An efficient multicast protocol
for content-based publish-subscribe systems," Proceedings of
the 19th International Conference on Distributed Computing
Systems (ICDCS’99), 1999.

[8] A. Carzaniga, D. S. Rosenblum, et al., "Achieving scalability
and expressiveness in an internet-scale event notification
service," Proceeding of Nineteenth ACM Symposium on
Principles of Distributed Computing (PODC 2000), 2000.

[9] G. Cugola, E. D. Nitto, et al., "The jedi event-based
infrastructure and its application to the development of the opss
wfms," IEEE Transactions on Software Engineering, 2001.

[10] P. Pietzuch and J. Bacon, "Hermes: A Distributed Event-Based
Middleware Architecture," presented at Workshop on
Distributed Event-Based Systems (DEBS), 2002.

[11] ActiveMQ, Available: http://activemq.codehaus.org/
[12] G. Fox and S. Pallickara, "NaradaBrokering: An Event-based

Infrastructure for Building Scalable Durable Peer-to-Peer
Grids," in Grid Computing: Making the Global Infrastructure a
Reality, 2003.

[13] J. Clark and S. DeRose, XML Path Language (XPath) Version
1.0, Available: http://www.w3.org/TR/xpath

[14] Y. Diao and M. J. Franklin, "High-Performance XML Filtering:
An Overview of YFilter," IEEE Data Engineering Bulletin,
2003.

[15] S. Shirasuna, A. Slominski, et al., "Performance Comparison of
Security Mechanisms for Grid Services," presented at 5th
IEEE/ACM International Workshop on Grid Computing, 2004.

[16] H. Nielsen, H. Sanders, et al., Direct Internet Message
Encapsulation, Available:
http://msdn.microsoft.com/library/en-us/dnglobspec/html/draft-
nielsen-dime-02.txt

[17] D. Box, F. Curbera, et al., Web Services Addressing (WS-
Addressing), Available: http://www.w3.org/Submission/ws-
addressing/

[18] OpenJMS, Available:
http://openjms.sourceforge.net/index.html

[19] D. Caromel, A. d. Costanzo, et al., "Asynchronous Peer-to-
PeerWeb Services and Firewalls," 7th International Workshop
on Java for Parallel and Distributed Programming (IPDPS
2005).

[20] B. Sotomayor, The Globus Toolkit 4 Programmer's Tutorial,
Available: http://gdp.globus.org/gt4-
tutorial/multiplehtml/index.html

[21] B. Sundaram, WS-Notification and the Globus Toolkit 4 WS-
Java Core, Available: http://www-
128.ibm.com/developerworks/grid/library/gr-wsngt4/

[22] XSUL web site, Available:
http://www.extreme.indiana.edu/xgws/xsul/index.html

[23] M. R. Head, M. Govindaraju, et al., "A Benchmark Suite for
SOAP-based Communication in Grid Web Services,"
Proceedings of Supercomputing 2005 (SC 2005), 2005.

[24] LEAD project website, Available: http://lead.ou.edu
[25] D. Gannon, B. Plale, et al., "Service Oriented Architectures for

Science Gateways on Grid Systems," International Conference
on Service Oriented Computing 2005, 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

